¿Por qué la materia no puede moverse más deprisa que la velocidad de la luz? (Parte 1)

Imagen

La energía suministrada a un cuerpo puede influir sobre él de distintas maneras. Si un martillo golpea a un clavo en medio del aire, el clavo sale despedido y gana energía cinética o, dicho de otro modo, energía de movimiento. Si el martillo golpea sobre un clavo incrustado en madera dura e incapaz por tanto de moverse, el clavo seguirá ganando energía, pero en forma de calor.

Albert Einstein demostró en su teoría de la relatividad que la masa cabía contemplarla como una forma de energía (y el invento de la bomba atómica probó que estaba en lo cierto). Al añadir energía a un cuerpo, esa energía puede aparecer por tanto en la forma de masa, o bien en otra serie de formas.

Imagen

En condiciones ordinarias, la ganancia de energía en forma de masa es tan increíblemente pequeña, que sería imposible medirla. Fue en el siglo XX, con la observación de partículas subatómicas que se movían a velocidades de decenas de miles de kilómetros por segundo, cuando se empezaron a encontrar aumentos de masa que eran suficientemente grandes para poder detectarlos. Un cuerpo que se moviera a unos 260.000 kilómetros por segundo respecto a nosotros mostraría una masa dos veces mayor que en reposo (siempre respecto a nosotros).

La energía que se comunica a un cuerpo libre puede integrarse en él de dos maneras distintas:

en forma de velocidad, con lo cual aumenta la rapidez del movimiento, y

en forma de masa, con lo cual se hace “más pesado”.

La división entre estas dos formas de ganancia de energía, tal como la medimos nosotros, depende en primer lugar de la velocidad del cuerpo (medida, una vez más, por nosotros).

Si el cuerpo se mueve a velocidades normales, prácticamente toda la energía se incorpora en forma de velocidad: el cuerpo se mueve más aprisa sin sufrir apenas ningún cambio de masa.

A medida que aumenta la velocidad del cuerpo (y suponiendo que se sigue inyectando constantemente energía) es cada vez menos la energía que se convierte en velocidad y más la que se transforma en masa. Observamos que aunque el cuerpo siga moviéndose cada vez más rápido, el ritmo de aumento de velocidad decrece. Como contrapartida notamos que gana masa a un ritmo ligeramente mayor.

Al aumentar aún más la velocidad y acercarse a los 299.793 kilómetros por segundo, que es la velocidad de la luz en el vacío, casi toda la energía añadida entra en forma de masa. Es decir, la velocidad del cuerpo aumenta muy lentamente, pero ahora es la masa la que sube a pasos agigantados. En el momento en que se alcanza la velocidad de la luz, toda la energía añadida aparece en forma de masa adicional.

El cuerpo no puede sobrepasar la velocidad de la luz, porque para conseguirlo hay que comunicarle energía adicional, y a la velocidad de la luz toda esa energía, por mucha que sea, se convertirá en nueva masa, con lo cual la velocidad no aumentará ni un ápice.

Todo esto no es “pura teoría”. Los científicos han observado con todo cuidado durante años las partículas subatómicas. En los rayos cósmicos hay partículas de energía increíblemente alta, pero por mucho que aumenta su masa, la velocidad nunca llega a la de la luz en el vacío. La masa y la velocidad de las partículas subatómicas son exactamente como predice la teoría de la relatividad, y la velocidad de la luz es una velocidad máxima como una cuestión de hecho, no en virtud de simples especulaciones.

Anuncios
Los comentarios están cerrados.
A %d blogueros les gusta esto: